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ABSTRACT

A generalized birth and death process serves as a simple, 
flexible model for computing the expected persistence time of a 
small population in a random world. We may reparametrize the model 
in ways that allow explicit incorporation of density depedendence, 
random differences between events experienced by individuals, and 
random environmental variation. We find that environmental 
variation poses a greater problem for population persistence than 
does individual variation, and that, comparatively, details of the 
form of the growth curve are not especially important, as long as 
the expected growth rate is positive. In particular, we find that 
with purely individual variation, the expected persistence time 
increases approximately with the power of the ceiling on 
population size; but with purely environmental variation, the 
expected persistence time increases approximately linearly with 
the size of the population ceiling. We discuss some aspects of 
reserve design and management in light of these results, noting in 
passing that an idealized system of separate reserves managed 
according to a raintroduction policy will confer a longer 
persistence time than a single reserve with the same total 
carrying capacity, but in the absence of the reintroduction policy 
the system of smaller separate reserves confers a shorter 
persistence time than the single large reserve.
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INTRODCJCTION

With many sorts of habitats, and indeed some entire 
ecosystems, dwindling in extent, the extinctions of many species 
are imminent. Attempts at saving some of these species as 
ecologically functioning members of more or less natural 
communities, rather than zoo populations, involve the 
establishment of reserves whose extent is very modest in 
comparison to the original range of the species, and which, for 
that reason, can only maintain comparatively small relict 
populations. We are concerned, therefore, to estimate the 
viabilities of these small populations, and to learn what 

management measures and reserve-design features will enhance their 
viabilities. Furthermore, since there is inevitably pressure, in a 
crowded world, to encroach upon reserves, we should like to 
estimate the extent of minimum reserve that will suffice to confer 
upon a population an expected time of extinction that is, by some 
criterion, acceptably remote. We shall scale this measure of

reserve extent in units of population size. This is the minimum 
viable population problem.

At the most elementary level, the minimum viable population 
problem can be framed in demographic terms; but the magnitudes of 
the demographic variables will depend on a variety of factors, 
such as habitat quality, environmental variation, and genetic 
composition of the population (Schaffer, 1981; Soule, 1980).

In this paper, we will, with a simple model, examine the 
relation between the expected survival time of a population and 
its associated demographic variables^ the' values of which are
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deterniined by the life history and by environmental statistics. In 

the discussion, we will relate the results of these analyses of 

properties of population models to considerations of population 

management, habitat management, and reserve design.
Subsequent papers in this series will treat the matter of 

adaptive evolution in small populations and the problem of reduced 

fitness owing to inbreeding. Briefly anticipating the results of 

these analyses, some of which build on the methods developed in 

the present paper, we will find we are summarily pessimistic about 

the possibility of continued evolution in relict populations, but 

we can be guardedly optimistic about the management of inbreeding 
depression.

CHANCE EXTINCTION

Self evidently, a population goes extinct when its last 

member dies. This death may be due to various causes, and among 

those causes will be many where "chance" plays a role. Similarly, 

the population is reduced to its last member when its second to 

last memoer dies, and this death too may be due to chance, etc. In 

this perspective then, we might conclude that, aside from 

extremely thorough catastrophes, populations become extinct, at 

least proximately, because of bad luck.
Ultimately, of course, we would want to inquire into the 

circumstances that exposed the population to this luck. If we were 

compiling an evolutionary narrative, we would doubtless call these 
circumstances the "cause" of the extinction. Yet it is informative 

to pursue the idea that luck dealt the final blow, for this 
motivates a search for the mathematical connection between what we



are loosely calling the "circumstances" of the population and the 
life expectancy" of that population in a somewhat unpredictable 

world.
If we were concerned with a particular population, about 

which much was known, we might construct a detailed model relating 
the dynamics of reproduction, maturation and mortality to 
environmental variables; and then we could set a computer to 
sampling environmental states and demographic events according to 
distributions which we had already decided were realistic. In this 
manner, we could, in successive trials, generate a distribution of 
the times to extinction under the model, and arrive at summary 
statistics applicable to that population under the given 
circumstances. This approach is illustrated by Shaffer's (1983) 
analysis of the dynamics of a small population of grizzly bears.

For a more general picture of the determinants of expectable 
persistence time, we must necessarily paint with a much broader 
brush, reducing the dimensionality of the determinants to the 
barest minimum, so that the underlying relationships can be 
discernible. We will adopt this minimalist strategy for the 
present analysis.

/

A BIRTH AND DEATH PROCESS
The simplest flexible mathematical representation of a finite 

population which may increase, by one birth at a time, or 
decrease, by one death at a time, with a random element in these 
increases and decreases, is the continuous time Markov chain

appropriately enough, a birth and death process. At the 
heart of the random element in this model is the stipulation that



-4-

births and deaths occur in a manner like that of radioactive 
decay: birth and death events are described merely as having 
probabilities of occurrence (per individual), and these 
probabilities are not directly affected in any way by the past 
history of the individual, except obviously that a death event 
terminates the history of that individual.

Under the birth and death model, for any individual in tne 
population, the probability of death during a short time interval 
At is given as as u At, (more precisely as u At +o(At), but since 
we have stipulated a short interval we ignore the ott) term) where 
u is referred to as the death rate, which is not explicitly time 
or age dependent. Thus for a situation where u remains constant, 
the probabability that an individual, alive at time 0, will still 
be alive at time t is exp(-ut). Put another way: for any 
individual in the population, the remaining time until death is an 
exponentially distributed random variable with parameter u, sc 
that the mean time remaining is 1/u, and the variance in the time 
remaining is l/u**2.

Similarly, for any individual in the population, the 
probability of giving birth (to one more individual) during a 
short time interval At is given as b At (again this is actually 
b At + o(At), as above), where b is referred to as the birth rate, 
which is not explicitly time or age dependent. Thus for a 
situation where b remains constant, the probability that an 
individual, observed at time 0 and still alive at time t, will not 
yet have given rise to a birth in this interval is exp(-bt). Put 
another way: for any individual observed in the population, the
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time until it next gives birth (unless death intervenes) is an 
exponentially distributed random variable with parameter b, so 
that the mean of the time till the next birth (for a surviving 
individual) is 1/b, and the variance is l/b**2.

Finally, birth and death events, in this model, are treated 
as independent, and the events in each individual are treated as 
independent.

It is clear, from this description, that some aspects of the 
randomness" in the demography of real populations are captured in 

a very natural way by the "birth and death process," whereas other 
aspects seem rather remote from the premises of model. We will 
need to be very careful about our understanding of the assumptions 
of the model in order to tailor it to our actual applications.

Despite the premonition that we may have to pound some square 
pegs into round holes in using the birth and death process as a 
model for the dynamics of reserve populations, we can see the 
attraction this model: Superficially, it seems to be determined 
by only two parameters, the birth rate and the death rate, 
resulting in a parameter space that we can readily explore in a 
very thorough way. In general, there will actually be different 
values of the parameters for every possible number of individuals 
that can comprise the population, but we can still keep the 
parameter space quite simple by considering a few general types of 
"density dependence" for the birth rate and death rate parameters.

The birth and death process was first developed by Feller 
(1939). The behavior of simple versions of this model, where no 
bound is placed on the population size, and where the per capita
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rates, u and b, are constant, have been investigated at some 
length (Feller, 1939). In particular, it is known that the 
expected value of the population size, at time t, starting with a 
population of one at time zero, is

(b-u)t
E{n(t)} = e [g]

recapitulating the familiar exponential growth form of the 
determininstic process. The variance in the size of this 
population at time t is

(b+u) (b-u)t (b-u)t
Var{n(t)} = —■ — * e (e - 1) [2]

(b-u)

In these models, with no limit on the population size, a 
population initiated at size n(o) has some probability of 
indefinitely escaping extinction by growing indefinitely numerous, 
provided its expectation of growth is positive. The probability of 
such an "escape" in a model with constant per capita rates is 
(Kendall, 1949)

n (o)
l-Po(t) = 1 - (u/b) [3]

t-»oo

Kendall (1948) observed that the parameters u and b could be 
made functions of time, and could be adjusted to achieve any 
stipulated trajectory for the expectation of the population size. 
Bartlett (1960) showed that making the values of u and b specific 
to each population size could achieve dynamics whose expectations 
recapitulate familiar density dependent models of deterministic 
population growth.

MacArthur (1972) considered the case where there is a fixed



population ceiling, k, with b and u constant, showing, for 
example, that the expected time to extinction of a population 
intiated with 1 individual is

k
1 <1 b

t(1) = - / - (-)**j 
b < j u
j=l

1 b
~ — (-)**k [4]

bk u

Slightly rearranging the algebra, we find that the expected 
time to extinction, in MacArthur's model, of a population 
initiated at its ceiling k is

k
1 < 1 bt(k) = (-- ) \ - [ -l]

b-u < j u
j = l '

1 b
~ --- - [ ( -) * * k -1] [5]

k(b-u) u

We shall next extend MacArthur's model to encompass a 
situation where the birth rate and death rate are not fixed, and 
then we shall reexpress the model in terms of parameters that are 
more natural for the problem under consideration.

PERSISTENCE TIME IN THE GENERAL BIRTH AND DEATH PROCESS
Consider a population, governed by a birth and death process, 

where the birth rates and death rates are arbitrary functions of 
the population size, so for a population of size n, we denote the 
per capita birth rate as b(n), and the per capita death rate as
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u(n). Denote the expected time to extinction for a population of 
size n at time zero as t(n).

Following the argument explained by MacArthur (1972), we note 
the relationship between t(n), t(n-l) and t(n+l). The expected 
persistence time of a population of size n, must be equal to the 
mean time for that population's first change, which may be either 
an increase by one or a decrease by one, plus the persistence times 
of the resulting larger or smaller populations weighted by the 
respective probabilities that the next change is an increase or a 
decrease:
lb u

(n) (n)
t -------------- - (---------) t + (-------- ) t [6]
(n) (b +u ) n b +u (n+1) b +u (n-1)

(n) (n) (n) (n) (n) (n)
Let the population have a ceiling of k, so that b(k)=0. Given 

also, obviously, that t(0)=0, we thus have a system of k equations 
of the above form, where the k values of b(n) and the k values of 
u(n) constitute knowns, and the k values of t(n) constitute 
unknowns.

Each of the k equations of the above form may be rearranaed to
1 = a t + a t + a t [7]

(j —1 > (jrj) (j) (j,j + l) (j+1)
where

= (b +u ) j [8]
( j r j > (j) (j)

= -b j [9]
C jr j + D (j)

= -u j [10]
(j,j-l> (j)

We have k such equations, one for each integer value of j 
from 1 to k, where, for the equation with j=l we need not bother
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with the a(1,0) term because t(0)—0, and for the equation with j=k 
we need not bother with the a(k,k+l) term since b(k)=0.

The motivation for the double subscripting is to re-express 
the set of k equations in matrix notation

1 = At [11]
where jL is the vector of ones, t_is the vector of expected 
extinction times for populations initialized at the various 
densities 1 through k, and A is the tridiagonal matrix, whose 
elements a(i,j) are as given above for j=i j=i+l and j=i-l, and 
the remainder of whose elements are zero. Thus we have a ready 
solution for the expected times to extinction:

-1
t = A *1 [12]

so that k
t(j) =^> c ( j , i ) [13

i = l

]

where the c's are elements of the matrix A inverse. The 
computational effort in inverting A is substantially reduced by 
capitalizing on the tridiagonal form.

REPARAMETRIZATION OF THE BIRTH AND DEATH PROCESS
The birth and death rate parameters of the birth and death 

process are not exactly isomorphic to the demographic parameters/ 
mean per capita birth rate and mean per capita death rate^in a 
real population. In the birth and death process model, the birth 
and death rate parameters play two roles, in that they determine 
both the expected growth rate of the population and the variance 
of the growth process.



In their role in determining the expected growth rate, in the 
birth and death process, the birth and death rate parameters act 
in a way which is familiar from the deterministic demographic 
model, with the expected growth rate being (b-u), as will be 
developed below. In their role in determining the variance of the 
growth process, the two parameters act in a way that is peculiar 
to the birth and death process model, and which, from the 
standpoint of our interest in real populations, may be construed 
as substantially artificial. For this reason, we will 
reparametrize the model in terms of the expected growth rate and a 
measure of the variance in the growth rate, so that we can 
stipulate values for growth rate and variance to suit our 
application. Then we will simply calculate the values of b and u 
which give the desired growth rate and variance in a birth and 
death process model, and we will plug these values into the 
algebra of the previous section in order to solve for the expected 
time to extinction.

a. The expected growth rate
Consider a time increment, At, which is so short that the 

population growth, in absolute terms, during this interval is 
negligible. Then, if we think of the "parent" population as 
constant during this interval, the births and deaths which accrue 
to this parent population during the interval may be represented 
as two simple, independent exponential processes, with parameters 
b(n)n and u(n)n respectively, where n is the size of the 
population. Accordingly, the numbers of births, and deaths, 
respectively, in the time interval /It, are independent Poisson
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distributed variables, with expectation b(n)n At and u(n)n At 
respectively.

During the interval At, the net population change, An, is the 
difference between accrued births and accrued deaths, the 
expectation of which is simply the difference between the 
expectations of the two independent Poisson variables.

E[£n] = [b(n)-u(n)] nAt [14]
Define the expected instantaneous growth rate of the 

population as
1 dn 1 E [An]

E(r) = E {- —} = - lim {-———-} 
n dt n At-»o At

=b(n)-u(n) [15]

b. A measure of variance in the growth rate
Define the variance in the growth rate as the variance in the 

quantity
1 An

r = ~ lim { —} [16]
n At—^o At

where An is the difference in two independent Poisson 
variables.

Since, for a Poisson variable the variance is equal to the 
mean, and for two independent random variables the variance of 
their difference is the sum of their two respective variances, we 
have

1 An
Var(r) = ---  Vardim {— })

n**2 ~t-*o At
b(n)+u(n)

[17]
n
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Accordingly, for a stipulated mean growth rate, E[r(n)], 
associated with a stipulated variance in growth rate, Var[r(n>], as 

defined above, at a given population size n, the required values 
of the parameters for the birth and death process are: 

u (n)
n Var[r(n)] - E[r(n)]

and

b ( n ) = E [ r (n ) ] +
n Var[r(n)] - E[r(n)]

= E[r(n)] + u(n) [19]

completing the parametrization.

c. The meaning of the variance in the model

For a real population, there are two essential components of 

variance in the growth process. One of these components operates 

independently in each individual. Examples of such variation would 

be the chance element of sex at birth, or the way in which each 

individual "samples" the universe of "accidental" death or chance 

opportunities for reproduction. The second component operates on 

the entire population. Examples of this kind of variation would be 

population-wide changes in the probabilities of death or 

reproduction owing to "environmental" events such as weather 

changes, or vagaries of disease, competition, predation and 

resource availability. For convenience we will label these two 

components of variance "individual" and "environmental."

The birth and death process model represents the variance as 

"individual" variance only. With the constant per capita rates, 

therefore, the variance, becomes very small as the population



increases, since the individual variation is being averaged over a 
larger and larger sample of individuals. That is, for b and u 
independent of population size, the variance is inversely 
proportional to the population size, as is seen in equation (17) 
with b(n)=b and u(n)=u.

In order to incorporate some variation in the spirit of 
environmental ' variance in the birth and death process model we 

use, we must force u(n) and b(n) to get larger and larger, with n, 
all the while preserving a difference between b(n) and u(n) that 
satisfies our stipulated value for the growth rate r(n).

Note that in its essence, "environmental" variance, within 
the same environment, will be independent of the population 
size. Thus we can actually parametrize in terms of the two 
variance components: we may stipulate a value for the individual 
component of variance (i.e., the differences between individuals) 
expressed as VI, the variance owing to these differences alone in 
a hypothetical population of one individual, and we may stipulate 
a value for V(env) the density independent variance owing to 
environmental variations. Then provided we believe that the per 
capita variation owing to the "individual" component is constant 
with density, the total variance, at any density n, is

VI
Var[r(n)] = — + V(env) [20]n

If the per capita variation owing to the individual component 
is itself a function of density, as might be reasonable where 
there is gradual density dependence of the demographic mortality 
rates and birth rates, we would have
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VI (n)
Var[r(n)] = ----  + V(env) [21]n

where VI is a function of n, as desired, for example treating 
Vl(n) as a linear function of r(n).

In this manner, we can represent a wide variety of patterns 
of variation, despite the strictures of the birth and death 
process model. The one feature we cannot change is that the birth 
and death process model inevitably represents all variation as 
temporally "fine grained", in fact assuming zero serial 
correlation at all non zero lags, whereas in real populations in 
real environments there is substantial serial correlation owing to 
age structure (which is more or less a part of the "individual" 
component of variance) and temporal patterns in environmental 
variation (most notably seasonality, where there may be seasonal 
bottlenecks" usually a stressful dry season or cold season, 
through which the population must pass). In other words, even 
though we can tailor the model to the desired value of variance, 
we must be extremely circumspect in translating our estimates from 
a "coarse grained" world to a parameter value in a fine grained 
model. In general, this will be accomplished by basing our 
estimate on observations during a time interval which is long 
enough for the coarse grained variation to be manifest, and then 
amortizing this variation to obtain a parameter value that 
essentially refers to an "instant" in the model. An example of 
this calculation, and an accompanying simulation which verifies 
the practical accuracy of the model, will be presented elsewhere.

Obviously, this collapsing of the structure of real
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populations in real environments to fit the assumptions of the 
birth and death process must result in some innaccuracy for any 
particular population; but it does achieve the goal of reduced 
dimensionality, and it does offer indefinite flexibility in the 
reduced space, so as to capture the essence of the variation in 
the actual population, provided we exercise sufficient care in 
arriving at our estimates of parameter values. Given that the 
actual available data on variances in the demography of real 
populations are in any case sketchy (the sampling properties of 
variances, particularly with serial correlation, are not 
encouraging), this approach should certainly be adequate to 
elucidate any patterns that might be discernible within the 
resolution of our data.

THE RELATION BETWEEN PERSISTENCE TIME AND POPULATION SIZE 
FOR PURE ENVIRONMENTAL VARIANCE

MacArthur's (1972) analysis, since it treated u and b as 
constants, dealt with a system that, in our notation, represented 
the demographic variance as pure individual variance. In this 
system, we see from equation (5), that the expected time to 
extinction will increase approximately with the power of k, for k 
not small (as the exponential term then dominates the inverse 
dependence in the denominator). This is to say that the adverse 
effects of individual variance are readily escaped by increasing 
population size, which is consistent with equation (21), which 
shows the variance due to individual differences decreasing 
asymptotically to zero as the population size increases.
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Since pure environmental variance does not diminish with 
population size in our model, we may expect that it will pose a 

more severe problem for population persistence.

Consider a situation where the only variance in the growth 

rate is pure environmental variance which we represent as a 

constant value v, and where the expected growth rate is also 

constant, which we represent as a constant value r for all 

population sizes less than k. Then, from equations (18) and (15)

nv-r
U(n) = ---- [22]

2

and, for n<k
nv+r

b ( n ) = ---- [23]
2

with b(k)=0 by definition.

Then the k equations of the form of equation (7), when
written in terms of the u(n) and b(n), as in equations (8), (9),

and (10), yield, for 0<i<k, (recall that t(0)=0)

iv-r 2 iv+r
1 = -i (----)t + i vt - i (----)t [24]

2 (i—1) (i) 2 (i+1)
and for i=k

kv-r kv-r
1 = -k (----)t + k(----)t [25]

2 (k-1) 2 (k)
Equation (24) may be written as the recursion

2 iv+r
(t -t ) = ------ - + (--- -)(t -t ) [26]

(i) (i—1) i(iv-r) iv-r (i+1) (i)
which applies for i=l,2,3,...(k-1), while for i=k, from equation (25)

2
(t -t ) =

(k) (k-1) k(kv-r)
[27]
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So starting with
2 v+r

t = (t -t ) = ---- + (---)(t -t ) [28]
(1) (1) (C) (v-r) v-r (2) (1)

we iteratively apply equation (26) to substitute for the last
difference term on the right, obtaining after (k-1) iterations
an expression with (t —t ) on the right, for which we may

(k) (k-1)
substitute equation (27) yielding finally

k

i = l

2

i (iv-r)
jv+r
jv-r

j=l

jv+r
-------- -)
(j+1)v-r [29]

For r<(v/2), all the terms in the product sequence are ratios 
less than one, so we have immediately that t(l) must be 
considerably less than 2k/(v-r). The restriction on r is very 
mild, for even under the simple assumptions of the classic birth 
and death process, where births and deaths are exponential, and 
where there is no "environmental" variance, r is inevitably less 
than v by 2u for a single individual.

For small r, and other parameters in reasonable ranges, we 
may safely disregard r in the ratio (jv+r)/([j+1]v-r), obtaining

k
2 1

---- - > --- [30]
(1) (v-r) < i**2

i=l
which grows very much more slowly than linearly with k. Indeed for
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k not small, this expression for t(1) will hardly grow at all 
with k, since the sum of the infinite series l/i**2 is only 
Tk*2/6, roughly 1.6. This expression for t(l) increases with r 
and decreases with v, as expected.

There remains only the question of relating t(k) to t(l). 
Consider the set of k equations consisting of (k-1) equations of 
the form of equation (26), with i=l,2,3,...(k-1) , and equation 
(27). Adding together the left sides of all these equations, and 
the right sides, yields, after slightly rearranging the 
summations

k-—1-L  L

= 2S—-— [k-1]v+r V+r
+ t (-------- ) t (-- ) + 2rv >-----------------(k) c i(iv-r) (k) [k-1]v-r (1) v-r < ([i-l]v-r)(iv-r!i=l i=2

[31]
Since the last summation in equation [31] is just a weighted 

sum of t(i)'s, with all the weights positive for r<v, and since 
t(i) increases monotonically with i, there must be a value 
t(l) < t < t(k) for which

k-1 t k-1
>—-— -;>—1—
< ([i-1]v-r)(iv-r) t ([i-1]v-r)(iv-r!

[32]
i=2 i=2

On inspection, the denominator in the above summations gets large 
very rapidly as i increases, so t must be rather closer to t(l) 
than to t(k). Substituting equation (32) into (31), and 
rearranging

t k k-1
v+r (1) 1 < 1 ~ < 1t = ( [ k-1 ] v-r) { (-- -)------  - - \------- - vt \--------------- —

(k) v-r 2r r < i(iv-r) < ([i-1]v-r)(iv-r)
i=l i=2

[33]
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Since t(l)<t , if we substitute t(l) for t in equation (33) 
we obtain the inequality

t k k-1
v+r (1) 1 < 1 < 1t < ( [k-1 ]v-r) { (-- »)----- ► - - \------- - vt \________________

(k) v~r 2r r < i(iv-r) (1) < ([i-1]v-r)(iv-r:
i=l i=2

t34]

Approximate equation (30) showed that t(l) hardly grows at 
all with k, once k is not small. The two summations in inequality 
(34), similarly, for small r, behave like the summation i/i**2, so 
these too are largely unresponsive to k for k not small. Thus the 
entire expression in curly brackets in inequality (34) does not grow 
appreciably with k, once k is no longer small; so we have it, then, 
that the dominant role of k in the right hand side of inequality 
(34) is the linear expression outside the curly brackets. In other 
words, t(k) can not grow faster than, roughly, linearly with k.

Further, substituting equation (30) above, disregarding r in 
the summations wherever it appears in a sum or difference with 
some other value, replacing the summations of l/i**2 with their 
limiting value, and noting that the infinite series l/i(i-l) sums 
to 1, we obtain the rough approximation, for small r,

2
( [ k-1 ] v-r) 7T 3v-r 

t < -------------- - {-------2 } [35](k) (v-r)6v (v-r)
from which we see that the slope of the linear expression is 
very modest.

Thus, environmental variance does pose a more severe obstacle 
to population persistence than does individual variance, and this
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obstacle is not readily circumvented by modest increases in the 
population ceiling.

NUMERICAL RESULTS
a. Influence of maximum population size on mean persistence time

The discussion of the reparametrized version of the general 
birth and death model resolved three factors which will determine 
the expected time to extinction. These are the population ceiling, 
the schedule of mean growth rates at each population size, and the 
schedule of variance in the growth rate at each population size.
The two schedules may themselves be represented as parametrized 
functions.

We might conveniently treat the mean growth rate on the one 
extreme as a constant unaffected by density, or on the other as a 
value which declines linearly with density, reaching zero at the 
population ceiling (expressable, conventionally in terms of a zero 
density rate r(0) and the ceiling k). The schedule of variance is 
conveniently decomposed into an individual component and an 
environmental component, and these might, under various scenarios, 
be represented as density dependent or density independent, as 
will be discussed in a moment.

Here we begin an exploration of the response of persistence 
time in the parameter space defined by the above factors. In 
Figure 1 we show the response to mean growth rate (r) and 
population ceiling (k), where the growth model is density 
independent, the variance in growth rate conforms to a model where 
all the variance is due to independent individual variation and 
this variation is constant (density independent) corresponding to a
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value of 1.0 for the parameter Vl. To recapitulate the 
interpretation of this variance: it represents the variance we 
would expect to observe between individuals if we made 
simultaneous measurements of the growth contributions of many 
individuals over a very short time interval in a constant and 
uniform environment. If, hypothetically, the distribution were 
normal, a variance of 1.0 would correspond to a distribution where 
95% of the observed instantaneous rates would be less than r+2.0 
and greater than r-2.0.

The contours representing persistence times in Figure 1 are 
labeled at intervals corresponding to powers of 10. That these 
contours are relatively evenly spaced in the horizontal indicates 
that the expected persistence time is related more or less to the 
power of population size—as predicted by approximate equation (5). 
We see that the dependence on r is slight for the very smallest 
population sizes, but that as the population ceiling becomes even 
of modest magnitude, there is an appreciable effect of r, 
especially in the range of small r.

Further we note that with this assumption of individual 
sources of variance only, the expected time to extinction becomes 
very large at quite modest population sizes provided the mean 
growth rate is reasonably large. However, at mean growth rates of 
just a few percent per year (as might be the case for many large 
mammals), an expected time to extinction of say 1000 years will 
require a fairly substantial maximum population size, that is more 
than 50, when the variance is of the magnitude in this example.

Figure 2 represents a similar contour plot of expected time
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to extinction against a mean growth parameter and population 
ceiling, for individual variation only with variance equal 1.0, 
only here the model is density dependent, with linear (logistic) 
decline in the realized mean growth rate with population size, so 
that the growth parameter actually represents r(0) (whereas in 
Figure 1 it represented r). We find a similar power function form 
to the response surface, but the magnitudes of the persistence 
times are greatly reduced.

On reflection, it may not be reasonable to maintain a 
contstant variance attributable to individual variation whilst the 
mean growth rate is declining linearly to zero. For example, if 
the reduction in growth rate is brought about by a decline in 
birth rate, we might expect the variance between individuals to 
decline also (but not to zero). For example, if Vl declines 
linearly to half its zero density value at n=k, with the model 
otherwise identical to that of Figure 2, we obtain the plot of 
Figure 3. The expected persistence times, with density dependence, 
in Figure 3, are very close to those with density independence in 
Figure 1. We conclude that density dependence may not be terribly 
important to our calculation of time to extinction in small 
populations, provided the variance in the growth rate declines in 
a manner that is commensurate with the decline in mean growth 
rate, as density increases.

In Figure 4 we show the response of persistence time to mean 
growth rate (r) and population ceiling (k), where the growth model 
is density independent, as in Figure 1, but with all the variation 
in growth modeled as environmental variance, and this variance is
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constant corresponding to a a value 1.0 for the the parameter 
V(env), as contrasted with Figure 1 where VI was 1.0. To 
recapitulate the interpretation of this variance: it represents 
the variance we would expect to observe between sample 
determinations of the growth rate, taken at different times, where 
each sample spanned a very short time interval, but with each 
sample including sufficient individuals that the contribution of 
variation between individuals would be negligable.

Comparing the contour plot of Figure 4 with Figure 1, we find 
that with environmental variance the time to extinction is much 
shorter and it is much less responsive to the maximum population 
size. Whereas the contours in Figure 1 were labeled at intervals 
corresponding to powers of 10, in Figure 4 they are labeled at 
arithmetic intervals. We see, that with environmental variance, the 
expected extinction time, far from increasing exponentially with k, 
increases more or less linearly with k, as predicted by our 
approximate inequality (34). A trully massive population ceiling 
would be required to achieve a reasonably long time to extinction 
when the environmental variance were of the magnitude in this 
example.

More extensive numerical exploration of the determinants of 
persistence time, with this model, will be presented elsewhere.

We conclude from our initial exploration that the variance in 
the population growth rate, and especially that component of 
variance owing to environmental variation, will probably prove to 
be the critical element in determining the mean extinction time 
for a given small population whose mean growth rate is positive.
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Further, to the extent that the variance is dominated by 
environmental variance, the response of persistence time to the 
size of the population ceiling will be very gradual, rather than 
exhibiting an appearance of a dramatic threshold.

b. The distribution of persistence times
The machinery described in the preceding sections 

conveniently calculates a mean time to extinction. This does not 
tell us how representative the mean might be. To explore this 
latter question, we undertake a much less convenient course of 
simulation (for which, incidentally, the birth and death process 
is rather awkward).

The central algorithm of the simulation begins by first 
sampling an exponential distribution, the parameter of which is 
[b(n)+u(n)]n as calculated from specification of expected growth 
rate and variance in the growth rate, to obtain the time to the 
next demographic event. Tuis is followed by sampling a binomial, 
the parameter of which is b(n)/[b(n)+u(n)] , to determine whether 
the event is a birth or a death. Accordingly the population 
increases or decreases, and the elapsed time is accumulated until 
the population reaches zero. Each simulation is initialized with a 
population at its ceiling.

Figure 5 shows a histogram of extinction times for 1000 such 
trials of a population model where: the population ceiling is 20; 
the mean growth rate is 0.05, with no density dependence; the 
environmental component of the variation in growth rate is 0.25, 
expressed as a standard deviation (i.e., the square root of V(env) 
of equation [21]); and the individual component of variation,



expressed as a standard deviation in a population of 1 in a 
constant environment (i.e, the square root of VI of equation [21]), 
is 0.5. The mean persistence time in this simulated sample was 
122.6, compared to the calculated theoretical expectation of 121.4 
from equation (12).

The distribution is strongly skewed right. This, in concert 
with the observation that the standard deviation (103.4) is rather 
near to the value of the mean, suggests an exponential 
distribution. Transforming the values by raising e to the negative 
power of the observed value divided by the mean would, for a true 
exponential distribution, result in a uniform distribution in the 
range 0 to 1. The transformation performed on the sample from the 
simulation resulted in the histogram of Figure 6, which is rather 
like a uniform, indicating that the distribution is rather like an 
exponential in this example.

For an exponential distribution the median value is In(2) 
times the mean. Thus, if it is true in general that the persistence 
times in the birth and death process are distributed more or less 
like an exponential random variable, we may expect the median 
persistence time to be about 70% the mean. This is another way of 
saying that a large fraction of the extinctions will take place 
after elapsed times that are considerably shorter than the mean.

MANAGEMENT IMPLICATIONS OF DEMOGRAPHIC EFFECTS
As in many practical matters, we would wish, in the minimum 

viable population problem, for some simple rule of thumb, stating 
that above a particular magic number the population is rather safe 
from chance extinction, whilst below the magic number the
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population is very vulnerable. Our analysis indicates that, prima 
facie, no such number is forthcoming, for the expected survival 
time depends critically not just on the population ceiling but 
also on the mean population growth rate and on the variances in 
population growth rate. Further, for some portions of the 
parameter space, the relation between mean survival time and 
population ceiling is very gradual, so that what we mean by a 
large enough population will depend critically on what we mean by 
a long enough survival time.

Shaffer (1981) has tentatively suggested, for a starting 
definition, that the minimum viable population be that which has a 
99% probability of surviving 1000 years. The form of this 
definition addresses the matter of linking the required population 
ceiling to a specified parameter of the distribution of survival 
time. We must note here, however, that the particular values 
suggested will, from a social standpoint, prove extremely 
stringent. We observed that a simulated distribution of extinction 
times, under a plausible birth-and-death-process model, had a 
standard deviation that was of a magnitude comparable to the mean, 
with a substantial skew right, so that a 1% tail corresponding to 
1000 years will imply an enormous mean survival time, which may 
require correspondingly enormous populations if the growth rate 
mean and variances are at all unfavorable.

As regards computing the effects of mean growth rates and 
variances in growth rates, we find that once we do have estimates 
of their magnitudes, the mathematical machinery of the preceeding 
sections will make it quite simple to obtain an estimate of the
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minimum population ceiling required to achieve a specified mean 
tj.me to extinction. The estimation of a mean growth rate is not an 

uncommon component of ecological research and population 

management, though this is not to say that the practise is free of 
P-*-(c.f. Goodman, 1984). The estimation of variances in 

growth rate in a natural population, with partitioning of than 

variance into individual and environmental components, probably 

has never been undertaken in quite the form described here. In 

principle, it can be done, as will be illustrated in analysis of a 

simulation of an age structured population model with seasonal 

reproduction, to be presented elsewhere. In the actual event, it 
will prove a considerable task for each case, since the 

observations must span a long enough period of time to sample 

adequately the long term environmental variability.

Inevitably, there will also be some controversy about 

assumptions which will have to be made about the relation between 

the observed central mass of the distribution of environmental 

variation and the tail of the distribution corresponding to events 

too rare to appear in a feasible sampling program but which are 
still common enough that they bear on the stipulated time horizon 

for survival. This problem is by no means unique to our present 

endeavor. Gumbel (1958) quotes a presidential commission to the 
effect that: "However big floods get, there will always be a 

bigger one coming; so says one theory of extremes, and experience 

suggests it is true."

Though it may be difficult to obtain good estimates of the 

environmental variance, it will often be relatively easy to
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determine whether the population's circumstances correspond to a 
portion of the parameter space where the environmental variance is 
extremely important to the survival time. Where the effect of 
variance is small enough that there would be practical benefits 
from small increases in the mean growth rate, management measures 
could concentrate on that aspect of demography (Goodman, 198C).

Where the role of environmental variance is overriding, there 
will be merit to considering management measures that effectively 
reduce the variance most especially when there is reason to 
suspect that in the absence of such intervention the required 
minimum population ceiling is too large to be a social reality.
Such measures might include, suplemental rations, predator control, 
disease control, habitat modification, etc., implemented onlv at 
times when the population is declining too rapidly or is too small. 
Arriving at optimal schedules for implementing such interventions 
will be an interesting exercise in operations research.

This idea of systematic intervention in natural areas is 
somewhat at odds with the present philosophical stance of the Fark 
Service, for example, but these attitudes might well change when 
the need is documented. A potential debate over whether extinction 
is natural may provide temporary diversion.

Programs of reintroduction may be viewed as special cases of 
variance management. Reintroductions are often portrayed as 
singular efforts, which need not be repeated. successful
reintroductions, such as the redistribution of elk and pronghorn 
antelope earlier in this century, and of peregrine falcons very 
recently, seem more or less to be of this one-shot nature, but of
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course we are saying this from a rather short time perspective. I~ 
a longer perspective we might think of these introductions as part 
of a program which augments the species population whenever its 
local density becomes too sparse, as indeed is commonly done when, 
for example a particular reintroduction "fails." The captive 
breeding program for California Condor, now underway, is likely to 
lead to an indefinite program of release of captive-bred birds to 
the wild, in an attempt to supplement deficient wild recruitment 
which very possibly will continue to be deficient indefinitely.

Taking the view that particular reserves for particular 
species, if left to themselves, may well have unnacceptably high 
extinction rates individually, we come to the strategy of 
augmenting dwindling populations, or replacing lost populations, 
locally, with individuals moved from other reserves where, at that 
moment the population is nearer its local ceiling. The essence of 
this strategy is variance minimization. Judging the ensemble of 
reserves, among which the reintroductions are taking place, we 
naturally come to the the classic question in reserve design, 
whether a single reserve of total carrying capacity equal to the 
sum of the multiple reserves would be better or worse judged in 
terms of the expected time to extinction.

From the standpoint of our discussion of chance demographic 
events, and assuming that the habitats in consideration are of 
equivalent quality, the answer to the question depends on whether 
the environmental variance operating on the separate reserves is 
to some extent independent, while the environmental variance in 
the single large reserve is identical to that of any one of the
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smaller reserves. If the separate reserves exhibit at least partial 
independence, then over the ensemble of reserves the environmental 
variance will be less than that of the single large reserve, so 
the design of several reserves, linked by a transportation 
program, would be superior to a single large reserve.

In the absence of a transportation program, the comparison is 
slightly more complicated. Owing to the smaller population sice on 
each of the multiple reserves, the mean time to extinction on each 
would be less for these than for the single large reserve. B"t 
since we hypothesized that they are independent, the time for all 
of them to reach extinction is greater than the average time for 
one to do so. The simple solution to this puzzle is to envision 
each of the multiple reserves as one "individual" subject to a 
birth and death process model in which all the variance in growth 
rate was individual; and groups of the same size quantum in the 
single large reserve are likewise treated as "individuals" in the 
model. Here we immediately see that subdividing is 
disadvantageous, for the dynamics in the ensemble of small 
reserves will be those of a pure death process, whereas the single 
large reserve will have the dynamics of a birth and death process 
where the death rate is identical to, or smaller than, that in the 
multiple reserve ensemble (depending on the degree to which the 
aggregation into units is literal or figurative) and the birth 
birth rate is non zero whenever the number of "individuals" is less 
than the total number of smaller reserves.

It is hard to imagine the motivation for a deliberate policy 
forbidding reintroductions in a system of multiple reserves, but
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the above example does make clear that there would be a definite 
cost to neglecting the transportation program in a multiple 
reserve system, as that would result in an expected survival time 
which is less than could be expected on a single reserve of equal 
area, whereas with a proper transportation program the multiple 
reserve system would have a greater expected survival time than 
the single large reserve.
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function of the population ceiling (k) and mean population 
grow rate (r), in a model with no density dependence, no 
environmental variance, and with the between-individual
Individual" (vi*)?1"^ eXprSSSed °n the basis °f a single

33.



ME
AN

 I
NT

RI
NS

IC
 G

RO
WT

H 
RA

TE
 (r

0.26

0.21

o

0.16

0.11

0.06

0.01

Figure 2.

EXTINCTION TIME (CONTOURS)
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POPULATION CEILING (k)

Plot of mean population persistence time (contours), as 
a function of the population ceiling (k) and mean population 
growth rate of a vanishingly sparse population (r(o)), in a 
model with linear density dependence of the mean growth rate 
at each density, no environmental variance, and with the 
between-individual variance in r being unity expressed on the 
basis of a single individual (VI).

34.



me
an

 i
nt

ri
ns

ic
 g

ro
wt

h 
ra

te
 (r

EXTINCTION TIME (CONTOURS)

Figure 3. Plot of mean population persistence time (contours), as
a function of the population ceiling (k) and mean population 
growth rate of a vanishingly sparse population (r(o)), in a 
model with linear density dependence of the mean growth rate 
at each density, no environmental variance, and with the 
between-individual variance in r being unity in a vanishingly 
sparse population (expressed on the basis of a single individual) and declining linearly with density, to a value of 
one half at the population ceiling.
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Figure 4. Plot of mean population persistence time (contours), as a 
function of the population ceiling (k) and mean population 
growth rate (r), in a model with no density dependence, no between-individual variance in r, and with the environmental variance in r being unity.
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TIME TO EXTINCTION

Figure 5 °f t?;me to extinction in 1000 trials of a simulated 
Zhit* fu at? process' in a model with no density dependence,nJ6 P°pulat^on ceiling (k) was 20, the mean growth rate (r) 

the varia^ce component in r owing to the environmental 
variation corresponded to a standard deviation of 0.5, and the 
variance component in r owing to between-individual variation
h^f = SP?nded-t0,a ?ta?dard deviation of 0.5 expressed on the basis of a single individual ( v/Vl).
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Figure 6

TIME TO EXTINCTION (EXPONENTIAL TRANSFORM)

. Histogram of the times to extinction from the simulation shown 
in Figure 5, where the times have been transformed in a manner 
that would transform an exponentially distributed variable to 
a uniformly distributed variable on the interval (0,1) as 
explained in the text.
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